The eight tables on pages $1-56$ fall into two groups.
Tables 1 and 2 list for $x=-0.99(0.01)+0.99$, to $7 \mathrm{D}, \theta=\cos ^{-1} x$ and coefficients for the calculation of $P_{s}(\cos \theta)$ and $P_{s}{ }^{1}(\cos \theta)$ when $I_{0}(\tau \theta)$ and $I_{1}(\tau \theta)$ are known, while Tables 3 and 4 list for $x=1.01(0.01) 3(0.05) 5(0.1) 10(1) 60$, to $7 \mathrm{D}, \eta=\cosh ^{-1} x$ and coefficients for the calculation of $P_{s}(\cosh \eta)$ and $P_{s}{ }^{1}(\cosh \eta)$ when $J_{0}(\tau \eta)$ and $J_{1}(\tau \eta)$ are known.

Tables 5 to 8 do not require values of Bessel functions to be available. Tables 5 and 6 list for $x=-0.90(0.01)+0.99$, to 7 D , values of $\theta=\cos ^{-1} x$ and the first eight coefficients in the expansions of $P_{s}(\cos \theta)$ and $\left(1+4 \tau^{2}\right)^{-1} P_{s}{ }^{1}(\cos \theta)$ in powers of τ^{2}. Tables 7 and 8 list for $x=1.01(0.01) 3(0.05) 5(0.1) 10(1) 60$, to $7 \mathrm{D}, \eta=$ $\cosh ^{-1} x$ and the first eight coefficients in the expansions of $P_{s}(\cosh \eta)$ and $\left(1+4 \tau^{2}\right)^{-1} P_{s}{ }^{1}(\cosh \eta)$ in powers of τ^{2}.

There are no differences. Roundings in $\cosh ^{-1} x$ for $x \leqq 10$ are as in (a) above, while for $10<x \leqq 60$ there are upward roundings at $x=35$ and 59 , and unfortunately a major error at $x=11$, where final 689 should be 699 .

Taking the three volumes as a whole, the authors have achieved a gratifying fullness of coverage.
A. F.

1. Harvard University, Annals of the Computation Laboratory, v. 20, Tables of Inverse Hyperbolic Functions, Harvard University Press, Cambridge, Massachusetts, 1949.

80[L, M].-K. Singh, J. F. Lumley \& R. Betchov, Modified Hankel Functions and their Integrals to Argument 10, Engineering Research Bulletin B-87, The Pennsylvania State University, University Park, Pennsylvania, October 1963, $\mathrm{v}+29 \mathrm{p} ., 28 \mathrm{~cm}$. Price $\$ 1.00$.

Let

$$
\begin{aligned}
& h_{1}(z)=(12)^{1 / 6} e^{-i \pi / 6}[A i(-z)-i B i(-z)]=\left(\frac{2}{3} z^{3 / 2}\right)^{1 / 3} H_{1 / 3}^{(1)}\left(\frac{2}{3} z^{3 / 2}\right), \\
& h_{2}(z)=(12)^{1 / 6} e^{i \pi / 6}[A i(-z)+i B i(-z)]=\left(\frac{2}{3} z^{3 / 2}\right)^{1 / 3} H_{1 / 3}^{(2)}\left(\frac{2}{3} z^{3 / 2}\right)
\end{aligned}
$$

where the usual notation for Airy functions and Hankel functions is used. Tables are presented for the real and imaginary parts of

$$
h(z), \int_{0}^{s} h(i u) d u, \int_{0}^{s} \int_{0}^{v} h(i u) d u d v, z=i s
$$

for $s=-10(0.1) 10$, where h stands for h_{1} or h_{2}. The number of significant figures varies from 8 to 4 . Most of the tables are new, though there is some overlap with the tables of M. V. Cerrillo and W. H. Kautz (see Math. Comp., v. 16, 1962, p. 390). The functions were computed using ascending series and asymptotic series representations. The latter are not given in the text. For these and other representations, see Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill Book Co., 1963. I find it most irritating that this report containing work sponsored by the U. S. government should carry a price tag. This petty practice should be discontinued.

